15-16 year-olds
URM

Characteristics

A body describes a uniform rectilinear motion (URM) when:

- The trajectory is a straight line.
- Its velocity v is constant. (acceleration $a=0$).

Equation

The equation for the URM s:

$$
x(t)=x_{0}+v\left(t-t_{0}\right)
$$

where x represents the final position, x_{0} the initial position, v the final velocity, t the final time and t_{0} the initial time.

Graphs

UARM

Characteristics

A body is describing a Uniformly Accelerated Rectilinear Motion (UARM) when:

- The trajectory is a straight line
- The acceleration a is constant (velocity v variable)

Main equations

The main equations for the UARM :

$$
\text { Position: } \begin{align*}
x(t) & =x_{0}+v_{0}\left(t-t_{0}\right)+\frac{1}{2} a\left(t-t_{0}\right)^{2} \\
\text { Velocity: } v(t) & =v_{0}+a\left(t-t_{0}\right) \\
v^{2}-v_{0}^{2} & =2 a \Delta x \tag{2}
\end{align*}
$$

where x represents the final position, x_{0} the initial position, v_{0} the initial velocity, v the final velocity, a the acceleration, t the final time t_{0} the initial time and $\Delta x=x-x_{0}$ is the distance covered by the object.
Graphs

Free falling motion is a type of UARM where the acceleration is the acceleration of gravity. On Earth, $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (the acceleration is negative because it always points downwards).

Encounters

In these kind of problems two bodies start on different positions and hey meet after a while.

We follow three steps:

1. We write the position equations for each body
2. We set the meeting condition, that is, both positions are the
same when they meet.
3. We solve for the magnitude asked.

Example

A car is moving on a road which is parallel to a train track. The car stops on a red light in the exact moment that a train is passing with a constant velocity of $12 \mathrm{~m} / \mathrm{s}$. The car stays in the traffic light for 6 s and then it starts moving with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. Calculate:
a) Time needed for the car to catch the train since it stopped at the red light.
b) Distance covered by the car from the traffic light until it catches the train.
c) The velocity of the car when it catches the train.

Solution

a) The first thing to do is to write the motion equations for each object:

$$
\begin{aligned}
& \text { (UARM): } x_{\mathrm{c}}=x_{0_{\mathrm{c}}}+v_{0_{0}}\left(t-t_{0_{c}}\right)+\frac{1}{2} a_{\mathrm{c}}\left(t-t_{0_{\mathrm{c}}}\right)^{2} \\
& \text { (URM): } x_{\mathrm{t}}=x_{0_{\mathrm{t}}}+v_{\mathrm{t}}\left(t-t_{0_{\mathrm{t}}}\right)
\end{aligned}
$$

where we can see that the car is stopped for the first 6 s and the it starts the motion accelerating (parabola) and catching the train after 22.4 s .
b) To calculate the distance covered by the car we substitute the time $t^{*}=22.4 \mathrm{~s}$, in the position equation having in mind that en $x_{0}=0$:
$x_{\mathrm{c}}\left(t^{*}\right)=t^{* 2}-12 t^{*}+36=22.4^{2}-12 \cdot 22.4+36=268.7 \mathrm{~m}$
c) The velocity of the car when it catches the train can be
calculated using the velocity equation of the car, substituting $t=t^{*}$:
$v_{\mathrm{c}}\left(t^{*}\right)=v_{0_{\mathrm{c}}}+a_{\mathrm{c}}\left(t^{*}-t_{0}\right)=0+2 \cdot(22.4-6)=32.8 \mathrm{~m} / \mathrm{s}$

Characteristics

Characteristics of the Uniform Circular Motion (UCM) are:

- Circular trajectory.
- Velocity's module constant (tangential acceleration $a_{\mathrm{t}}=0$).

Equation

The equation for the UCM is

$$
\varphi(t)=\varphi_{0}+\omega\left(t-t_{0}\right),
$$

where φ is the final angular position, φ_{0} the initial angular position, ω the angular velocity, t the final time and t_{0} the initial time.
Period T The time invested by the object in covering a complete revolution is called period, T.
Frequency f is the number of revolutions covered per time unit. Frequency, f, it is related to the period by the equation:

$$
f=\frac{1}{T}\left[\frac{1}{s}=\mathrm{s}^{-1}=\mathrm{Hz}\right]
$$

The angular velocity, ω, is related with the period and the frequenc by the following expressions:

$$
\omega=\frac{\Delta \varphi}{\Delta t}=\frac{2 \pi}{T}=2 \pi f
$$

Lineal and angular magnitudes are related by the radius R

$$
\begin{aligned}
& s=\varphi R \\
& v=\omega R
\end{aligned}
$$

Centripetal Acceleration a

Also called normal acceleration, is the acceleration related to the change of direction of the velocity vector. Its module can be calcuated as:

$$
a_{\mathrm{c}}=\frac{v^{2}}{R}=\omega^{2} R
$$

and it always points to the center of the circumference.

